Day 13

Fundamental Problems in Mobile Robotics

Fundamental Problems

Chapter 2 of Dudek and Jenkin begins:
"Before delving into the harsh realities of real robots..."

A Point Robot

- represents a mobile robot as a point in the plane*
- the point P fully describes the state of the robot
- called pose or configuration
- robot motion causes the state to change
- i.e., if the robot moves from P to Q then its state changes from

Free Space and Obstacles

- the set of valid poses is called the free space $C_{\text {friee }}$ of the robot - the invalid poses are obstacles

Path Planning

is it possible for the robot to move to a goal configuration while remaining in $C_{\text {free }}$?

Path Planning Using Bugs

- bug algorithms assume:
p point robot
- known goal location
- finite number of bounded obstacles
b robot can perfectly sense its position at all times
p robot can compute the distance between two points
p robot can remember where it has been
- robot can perfectly sense its local environment
- robot can instantaneously change direction

Bug Zero

- assumes a perfect contact sensor
- repeat
- head towards goal
- if goal is reached then stop
- if an obstacle is reached then follow the boundary until heading towards the goal is again possible

Bug Zero

Bug Zero

Bug Zero

- not guaranteed to reach the goal goal W

Bug One

- assumes a perfect contact sensor
- repeat:
- head toward goal T
- if goal is reached then stop
- if an obstacle is reached then
v remember the point of first contact H (the hit point)
- follow the boundary of the obstacle until returning to H and remember the point L (the leave point) closest to T from which the robot can depart directly towards T
\square if no such point L exists then the goal is unreachable; stop
- move to L using the shortest boundary following path

Bug One

Bug One

Bug One

Bug One

Bug Two

- Bug Two uses a line, called the m-line, from the start point to the goal
v textbook calls the m-line the direct path

Bug Two

- assumes a perfect contact sensor
- repeat:
- head toward goal T along the m-line
- if goal is reached then stop
- if an obstacle is reached then
v remember the point of first contact H (the hit point)
- follow the boundary of the obstacle until the m-line is crossed at a leave point closer to the goal than H
\square if no such point L exists then the goal is unreachable; stop
- leave the obstacle and head towardT

Bug Two

Bug Two

Bug One versus Bug Two

- Bug One uses exhaustive search
- it considers all leave points before leaving the obstacle
- Bug Two uses greedy search
- it takes the first leave point that is closer to the goal

